
AAA game in XNA?

From the authors of Miner Wars 2081
Version: 27th March 2012

Marek Rosa, Keen Software House

www.minerwars.com

www.keenswh.com

http://www.minerwars.com/
http://www.keenswh.com/

Why XNA?
• XNA simplifies access to DirectX 9

• XNA is more intuitive than DirectX = less development time

www.minerwars.com

• C# / .NET vs. C++
o Faster compilation (seconds vs.

minutes)
o Code readability
o Existing .NET classes and libraries
o Unicode strings
o Garbage collector

• 95% of game time is spent in GPU,
since Miner Wars is heavily GPU
bound, therefore it’s usually irrelevant
that C# code is slower than C++

• Probably easier porting and debugging
to XBOX – but we haven’t tested it yet

Disadvantages of XNA

• We are bound to DX 9, e.g.
can’t use texture atlas,
tessellation, multi-thread
rendering, etc. Not a problem
right now since we have other
priorities.

• Occasional bugs in XNA, e.g.
device lost

• Can’t port to other platforms
than Windows and XBOX

www.minerwars.com

Scene statistics

• Voxel asteroid: 2-10 mil triangles
• Space station: 5-10 mil triangles
• Sector/scene = 50x50x50 kilometers

o Tens of voxel asteroids
o Tens of space stations and space ships
o Thousands of prefab modules

• We are aiming for:
o 60 FPS, one frame has 16.6 milliseconds
o About 500,000 triangles in frustum
o About 1,000 objects in frustum

www.minerwars.com

Voxels

• Voxels are converted to
triangles prior to rendering /
collision-detection

• Cached in CPU (data cell,
render cell)

• Cached in GPU vertex and
index buffers (larger render
cells with tens of thousands of
triangles)

• Recalculated after a change
(data/render cell invalidated
after explosion or editor
operation)

www.minerwars.com

Deferred Renderer

• Renders into 3 render targets (diffuse + specI, normal + specP, linear depth +
emissivity)

• LOD0 & LOD1 – smooth LOD transition in image space (no popping or hard
switching)
o LOD0 = high-poly near objects, less than 2,000 meters distance
o LOD1 = low-poly distant objects, more than 2,000 meters distance

o LOD1 scene has usually 100-500x less triangles than LOD0
o Some models don’t have LOD1 (e.g. doors, small tunnels) – they fade-out to background
o LOD1 for voxels is calculated by averaging voxel data cells

• Dynamic environment cube-map - re-rendered as you move, ambient map and
reflection map represent the actual surrounding

• Sun light and shadows, point hemisphere pot lights
• SSAO
• FXAA
• HDR
• Transparent geometry (billboards, particle system – emitters, 2D animated

parameters, generations)

www.minerwars.com

Smooth LOD transition in image space

www.minerwars.com

Smooth LOD transition in image space

www.minerwars.com

Screen Space Ambient Occlusion -
SSAO

www.minerwars.com

Physics & Simulation

• Own in-house physics engine

• Player and AI ships are represented as boxes (spheres
work well too)

• Voxels can be represented as voxels or triangle meshes

• Spatial hierarchies

• Tunneling avoidance for high velocity objects by
interpolating the position between steps (e.g. missiles
or high speed ships)

• Integration step is 60x per second

• Area sensors

www.minerwars.com

Optimizations

• We use our own in-game profiler, for performance & memory profiling
• Focus on “algorithm and idea” optimizations
• Hard-core low-level optimizations only in methods that are used frequently, e.g.

collision detection calculations, pixel shaders, etc.
• Use pruning structures, AABB, octrees, multi-dimensional queues…
• Multi-threading for voxels and physics

– We use Parallel Tasks
– Consider task granularity, e.g. throwing a loop with 1000 simple iterations into parallel tasks

won’t help. The task handling overhead is too big. Test it.

• Vector and matrix operations – use ref/out or write it yourself, it’s faster
– E.g. [a.x = b.x * c.x; a.y = b.y * c.y; a.z = b.z * c.z;] is way more faster than [a = b * c]

• GPU instancing – use it for deferred lights and model rendering, about 5-10%
speed improvement

• If possible, pass objects by reference, avoid structs (copying on stack is expensive)
• Don’t do object allocations during gameplay (calling “new” on a class). Use pre-

allocated objects pools (particles, billboards, projectiles, debris objects, etc.)
– Although, object allocations are OK during the game loading phase

www.minerwars.com

In-game profiler

www.minerwars.com

Visualizing deferred lights

www.minerwars.com

Render octrees

www.minerwars.com

Visualizing particle overdraw

www.minerwars.com

Thank you

• We are still looking for programmers in Prague.

• Talented students too!

Marek Rosa, Keen Software House

www.minerwars.com

www.keenswh.com

http://www.minerwars.com/
http://www.keenswh.com/

